27 research outputs found

    A partial form of inherited human USP18 deficiency underlies infection and inflammation

    Get PDF
    International audienceHuman USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease

    The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies

    Get PDF
    Since the 1990s, the International Union of Immunological Societies (IUIS) PID expert committee (EC), now called Inborn Errors of Immunity Committee, has published every other year a classification of the inborn errors of immunity. This complete catalog serves as a reference for immunologists and researchers worldwide. However, it was unadapted for clinicians at the bedside. For those, the IUIS PID EC is now publishing a phenotypical classification since 2013, which proved to be more user-friendly. There are now 320 single-gene inborn errors of immunity underlying phenotypes as diverse as infection, malignancy, allergy, auto-immunity, and auto-inflammation. We herein propose the revised 2017 phenotypic classification, based on the accompanying 2017 IUIS Inborn Errors of Immunity Committee classification

    Severe Combined Immunodeficiency Disorder due to a Novel Mutation in Recombination Activation Gene 2: About 2 Cases

    No full text
    Severe combined immunodeficiency (SCID) comprises a heterogeneous group of inherited immunologic disorders with profound defects in cellular and humoral immunity. SCID is the most severe PID and constitutes a pediatric emergency. Affected children are highly susceptible to bacterial, viral, fungal, and opportunistic infections with life-threatening in the absence of hematopoietic stem cell transplantation. We report here two cases of SCID. The first case is a girl diagnosed with SCID at birth based on her family history and lymphocyte subpopulation typing. The second case is a 4-month-old boy with a history of recurrent opportunistic infections, BCGitis, and failure to thrive, and the immunology workup confirms a SCID phenotype. The genetic study in the two cases revealed a novel mutation in the RAG2 gene, c.826G > A (p.Gly276Ser), in a homozygous state. The novel mutation in the RAG2 gene identified in our study may help the early diagnosis of SCID

    IFN-gamma and CD25 drive distinct pathologic features during hemophagocytic lymphohistiocytosis

    No full text
    BACKGROUND: Inflammatory activation of CD8+ T cells can, when left unchecked, drive severe immunopathology. Hyperstimulation of CD8+ T cells through a broad set of triggering signals can precipitate hemophagocytic lymphohistiocytosis (HLH), a life-threatening systemic inflammatory disorder. OBJECTIVE: The mechanism linking CD8+ T-cell hyperactivation to pathology is controversial, with excessive production of IFN-γ and, more recently, excessive consumption of IL-2, which are proposed as competing hypotheses. We formally tested the proximal mechanistic events of each pathway in a mouse model of HLH. METHODS: In addition to reporting a complete autosomal recessive IFN-γ receptor 1-deficient patient with multiple aspects of HLH pathology, we used the mouse model of perforin (Prf1)KO mice infected with lymphocytic choriomeningitis virus to genetically eliminate either IFN-γ production or CD25 expression and assess the immunologic, hematologic, and physiologic disease measurement. RESULTS: We found a striking dichotomy between the mechanistic basis of the hematologic and inflammatory components of CD8+ T cell-mediated pathology. The hematologic features of HLH were completely dependent on IFN-γ production, with complete correction after loss of IFN-γ production without any role for CD8+ T cell-mediated IL-2 consumption. By contrast, the mechanistic contribution of the immunologic features was reversed, with no role for IFN-γ production but substantial correction after reduction of IL-2 consumption by hyperactivated CD8+ T cells. These results were complemented by the characterization of an IFN-γ receptor 1-deficient patients with HLH-like disease, in whom multiple aspects of HLH pathology were observed in the absence of IFN-γ signaling. CONCLUSION: These results synthesize the competing mechanistic models of HLH pathology into a dichotomous pathogenesis driven through discrete pathways. A holistic model provides a new paradigm for understanding HLH and, more broadly, the consequences of CD8+ T-cell hyperactivation, thereby paving the way for clinical intervention based on the features of HLH in individual patients.status: publishe

    Mendelian susceptibility to mycobacterial disease: an overview

    No full text
    Abstract Background Mycobacteria include ubiquitous species of varying virulence. However, environmental and individual-specific factors, particularly host genetics, play a crucial role in the outcome of exposure to mycobacteria. The first molecular evidence of a monogenic predisposition to mycobacteria came from the study of Mendelian susceptibility to mycobacterial disease (MSMD), a rare inborn error of IFN-γ immunity conferring a selective susceptibility to infections even with low virulent mycobacteria, in patients, mostly children, without recognizable immune defects in routine tests. This article provides a global and updated description of the most important molecular, cellular, and clinical features of all known monogenic defects of MSMD. Results Over the last 20 years, 19 genes were found to be mutated in MSMD patients (IFNGR1, IFNGR2, IFNG, IL12RB1, IL12RB2, IL23R, IL12B, ISG15, USP18, ZNFX1, TBX21, STAT1, TYK2, IRF8, CYBB, JAK1, RORC, NEMO, and SPPL2A), and the allelic heterogeneity at these loci has led to the definition of 35 different genetic defects. Despite the clinical and genetic heterogeneity, almost all genetic etiologies of MSMD alter the interferon gamma (IFN-γ)-mediated immunity, by impairing or abolishing IFN-γ production or the response to this cytokine or both. It was proven that the human IFN-γ level is a quantitative trait that defines the outcome of mycobacterial infection. Conclusion The study of these monogenic defects contributes to understanding the molecular mechanism of mycobacterial infections in humans and to the development of new diagnostic and therapeutic approaches to improve care and prognosis. These discoveries also bridge the gap between the simple Mendelian inheritance and complex human genetics

    Summary of whole-exome sequencing results.

    No full text
    a<p>Number of variants not found in dbSNP or 1000 Genomes or HapMap and <0.001% in our database;</p>b<p>Hom: homozygous mutation;</p>c<p>Het, heterozygous mutation;</p>d<p>UTR-5: the five-prime untranslated region;</p>e<p>UTR-3: the three-prime untranslated region;</p>f<p>lincRNA: long non-coding RNA;</p>g<p>miRNA: microRNA.</p

    mRNA and protein levels for the subunits of the AP-4 complex.

    No full text
    <p>A). RT-qPCR to assess mRNA levels for the components of the AP-4 complex in EBV-B cells from P1. B). RT-PCR to assess the splicing of <i>AP4E1</i> mRNA. C). Western blot: whole-cell homogenates from EBV-B cells from P1 and a healthy control were subjected to western blotting for clathrin heavy chain (CHC; loading control), AP-4ε, AP-4β or AP-4 μ. The loss of AP-4ε results in a concomitant decrease in the levels of AP-4β and AP-4 μ (specific bands are indicated by an arrow). These experiments were carried out at least twice.</p
    corecore